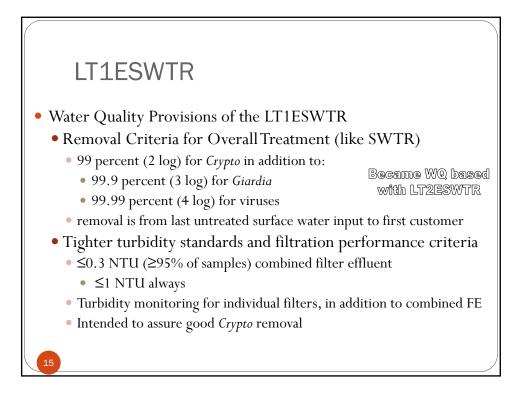
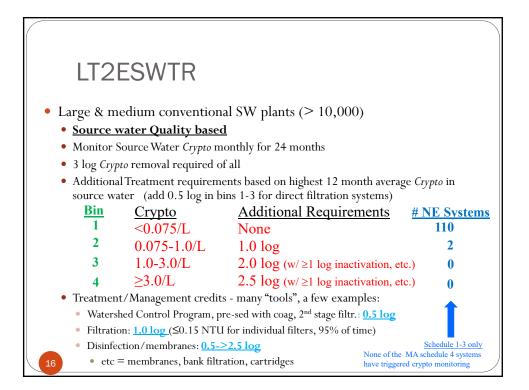
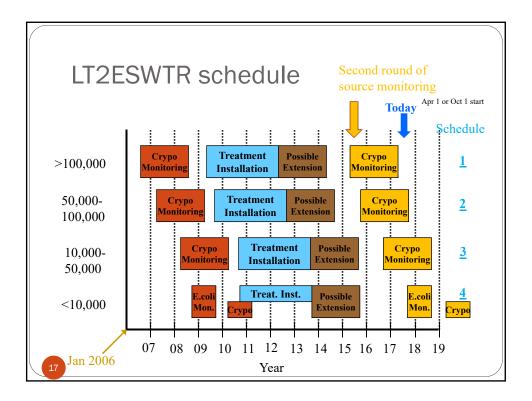
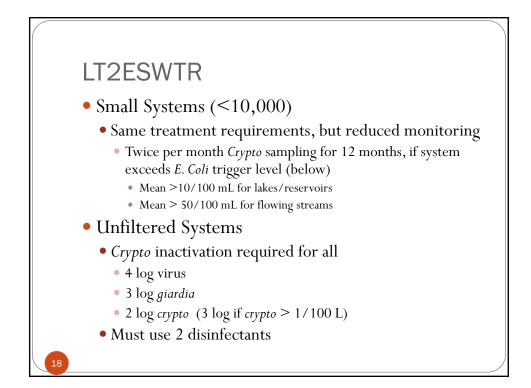
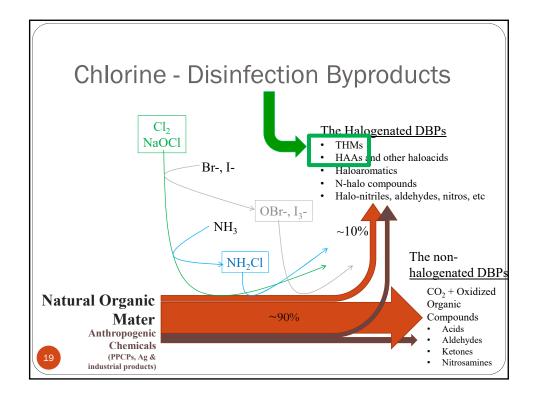

	for	r (j	18	ar	d	12		Å		-r	'e	e	(Ĵ	n	0	۱N	n	e				
								-					-											
	Table	e C-1	. C1	r Val	lues	for	Inac	tiva	tion	of	Giar	dia (Cyst	s by	Fre	e Cl	nlori	ne a	t 0.5	°Co	or Lov	ver		
CHLOR	INE NTRATION		Lo	pH<	=6 tivation	n			Lo		=6.5 ctivati	on			Le	pH=		on				pH=7 Inact	.5 vation	
(mg/L)	<=0.4	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0 195	0.5	1.0 1	.5 2	2.0 2.5	
	0.6	24	47	71	94	118	141	28	56	84	112	140	169	33	67	100	133	167	200	40	80 12	20 1	59 199	239
	0.8	24 25	48 49	73 74		121	145	29 29	57 59	86 88	115	143	172	34 35	68 70	103	137	171	205	41 42			64 205 69 211	248 253
	1.2	25	51	76	101	127	152	30	60	90	120	150	180	36	72	108	143	179	215	43	86 13	30 1	73 216	259
	1.4	26 26	52 52	78 79		129 131	155 157	31 32	61 63	92 95	123 126	153 155	184 189	37 38	74 75	111	147 151	184 188	221 226	44 46			77 222 82 228	266 273
	1.8	27 28	54 55	81 83		135 138	162	32 33	64 66	97 99	129 131	161 164	193 197	39 39	77	116 118	154 157	193 197	231	47 48			86 233 91 238	
	2.2	28	56	85	113	141	169	34	67	101	134	169	201	40	81	121	161	202	242	50	99 14	19 1	98 248	297
	2.4	29 29	57 58	86 88		143 146	172	34 35	68 70	103	137 139	171	205	41 42	82 84	124	165 168	206	247 252	50 51			99 248 03 253	
	2.8	30 30	59 60			148 151	178	36 36		107	142 145	178 181	213	43 44	86 87	129	171		257 261			55 2 58 2	07 258	
CHLOR		30		pH=			101	50		pH=			211	44		pH=	9.0		201				ofH&	
(mg/L)		0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0.5	1.0	1.5	2.0	2.5	3.0	0 T	able			
	<=0.4	46 48	92 95	139 143		231 238	277 286	55 57	110	165	219 228	274 285	329 342	65 68	130 136	195 204	260 271	325 339	390 407	_			from	
	0.8	49	98	148	197	246	295	59	113	177	236	295	354	70	141	211	281	352	422		nis ta		non	·
	1.2	51 52	101 104	152 157	209	261	304 313		122 125	183 188	243 251	304 313	365 376	73 75	146 150	219 226	291 301	376	437 451	u	ns ta	Die		
	1.4 1.6	54 55	107			268	321		129 132	194	258	323	387 397	77 80	155 159	232 239	309 318	387 398	464 477					
	1.8	56	113	169	225	282	338	68	136	204	271	339	407	82	163	245	326	408	489				A, 19	
	222	55 59	115	173		288	346 353		139 142	209	278	348 355	417 426	83 85	167 170	250 256	333 341	417 426	500 511				Manu	al
	2.4	60	120	181	241	301	361	73	145	218	290	363	435	87	174	261	348	435	522		or Dis			
	2.6	61 63	123 125	184 188		307 313	368 375		148 151	222	296 301	370 377	444	89 91	178	267 272	355 362	444 453	533 543		rofilir			
	3				255							383	460				369	460	552	B	enchr	nar	king	

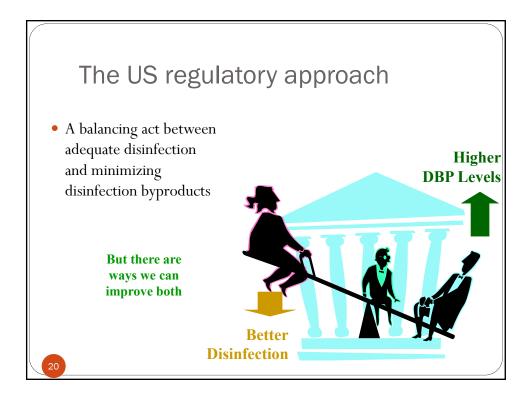

U	vai	ues to	or Gia	rdia la	ambl	ia cys	ts
&H, Table 7-	-4, pg.2	45			WATER TEMPERATU	JRE	
		Log	0.5°C	5°C	10°C	15°C	20°C
	ΡΗ	INACTIVATION	[(mg/l) · min]	[(mg/l) · min]	[(mg/l) · min]	[(mg/l) · min]	[(mg/l) · m
Free							
chlorine ^a	6	0.5	25	18	13	9	7
	6	1.0	49	35	26	18	13
	7	0.5	35	25	19	13	9
	7	1.0	70	50	37	25	18
	8	0.5	51	36	27	18	14
	8	1.0	101	72	54	36	27
Preformed							
chloramine	6–9	0.5	640	370	310	250	190
	6-9	1.0	1300	740	620	500	370
Chloride							
dioxide	6-9	0.5	10	4.3	4.0	3.2	2.5
	6-9	1.0	21	8.7	7.7	6.3	5.0
Ozone	6-9	0.5	0.48	0.32	0.23	0.16	0.1
	6-9	1.0	0.97	0.63	0.48	0.32	0.2

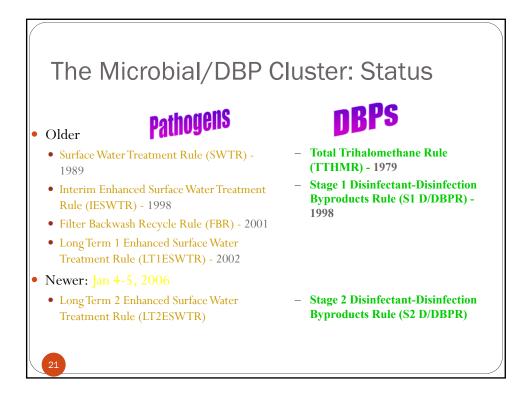

 $\overline{}$

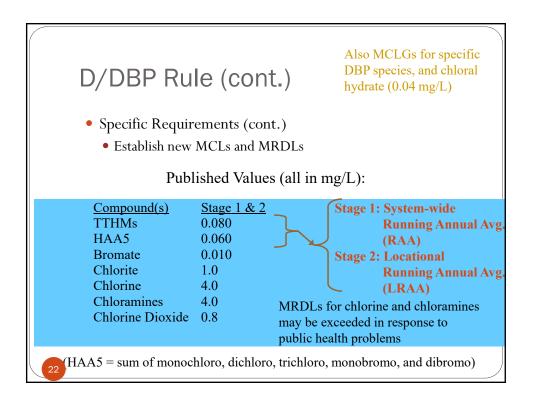


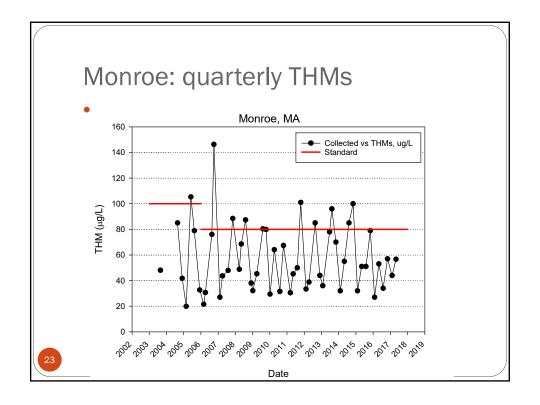


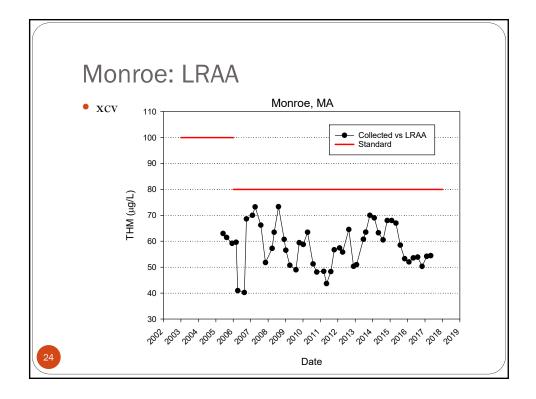


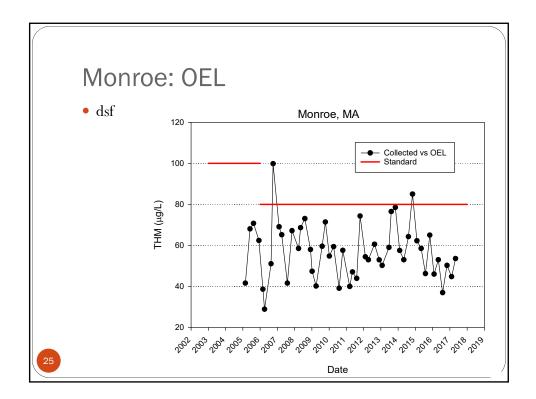


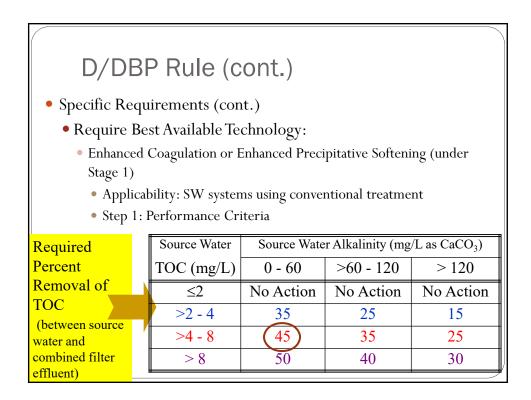


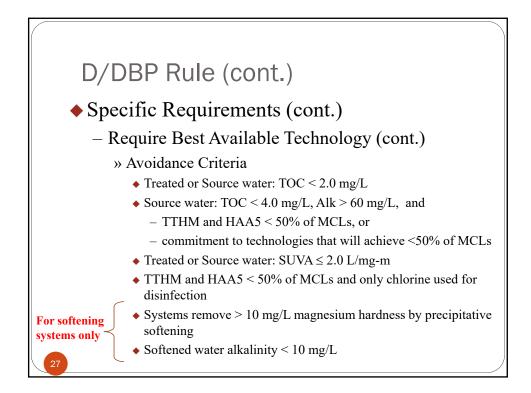


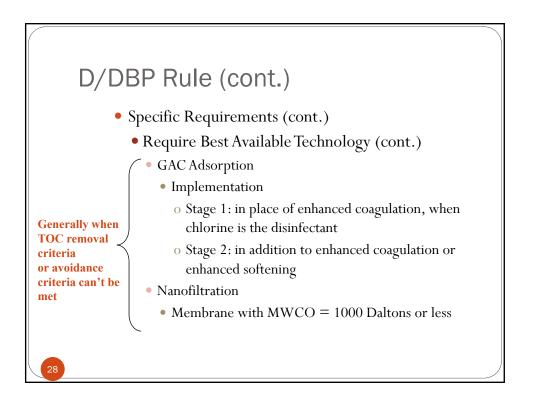


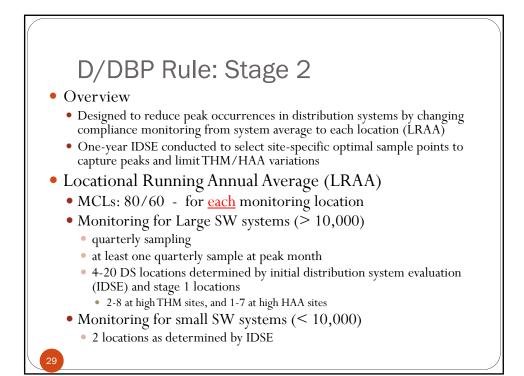


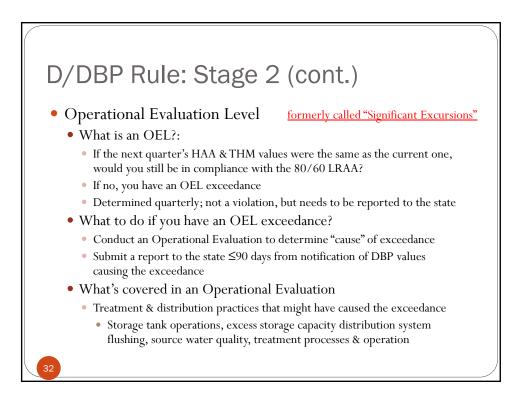


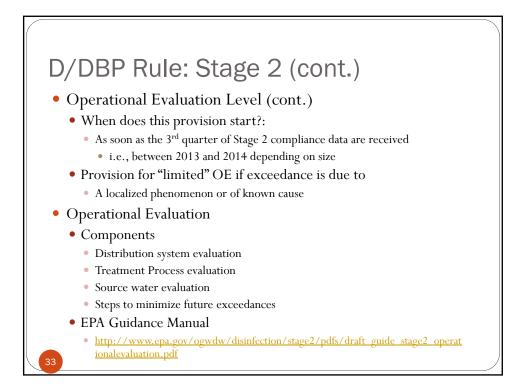


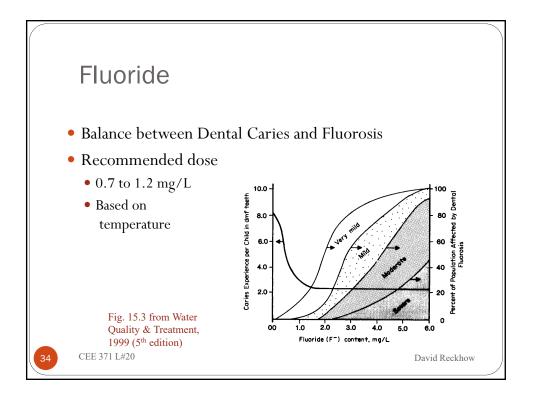


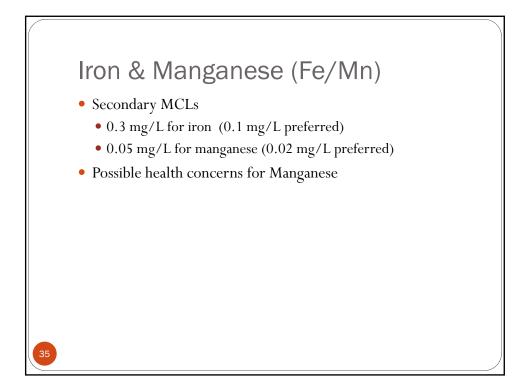


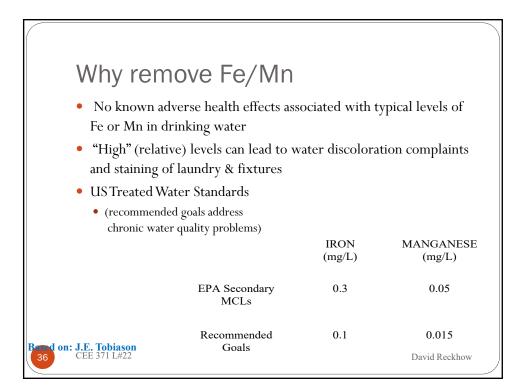


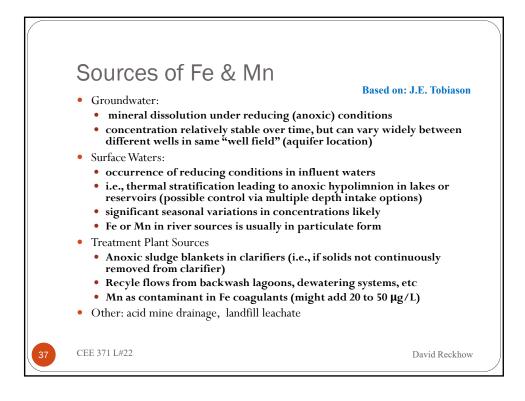


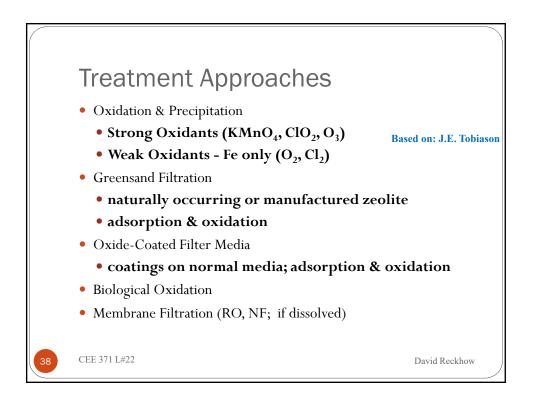


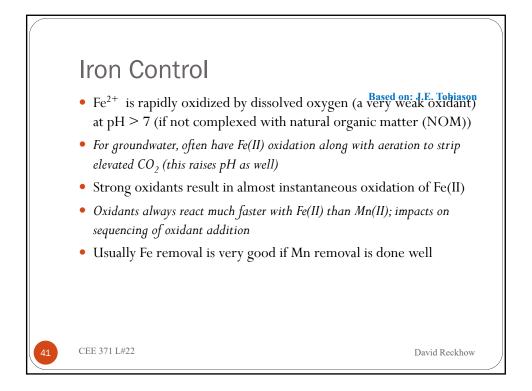


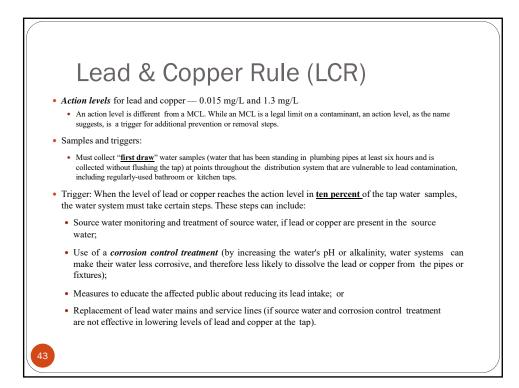

1	ule: Sta n-based mor Water System	nitoring		omp	liance
Surface Water	DS N	Monitoring			
System Size	Stage 1 Compliance	Highest TTHM	Highest HAA5	Total	Frequency
<500	0	1	1	2	Yearly
500-3,300	0	1	1	2	Quarterly
3,301-9,999	0	1	1	2	Quarterly
10,000-49,999	1	2	1	4	Quarterly
50,000-249,999	2	3	3	8	Quarterly
250,000-999,999	3	5	4	12	Quarterly
1M - <5M	4	6	6	16	Quarterly
≥5M	5	8	7	20	Quarterly


1	-based monito I <mark>water System</mark>	0			
Groundwater	DS M	lonitoring	Location	ns	Monitoring
System Size	Stage 1 Compliance	Highest TTHM	Highest HAA5	Total	Frequency
<500	0	1	1	2	Yearly
500-9,999	0	1	1	2	Yearly
10,000-99,999	1	2	1	4	Quarterly
100,000-499,999	1	3	2	6	Quarterly
≥500,000	2	3	3	8	Quarterly

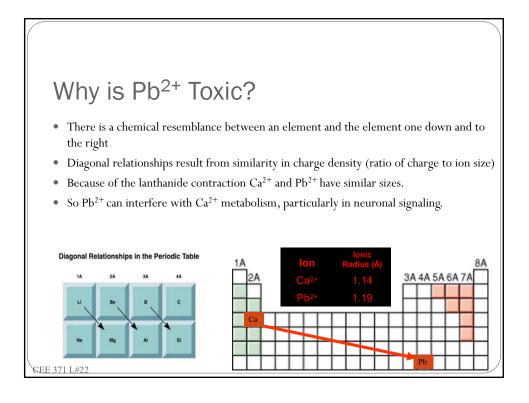


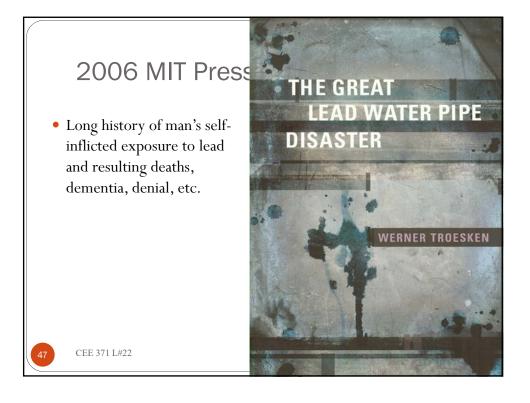


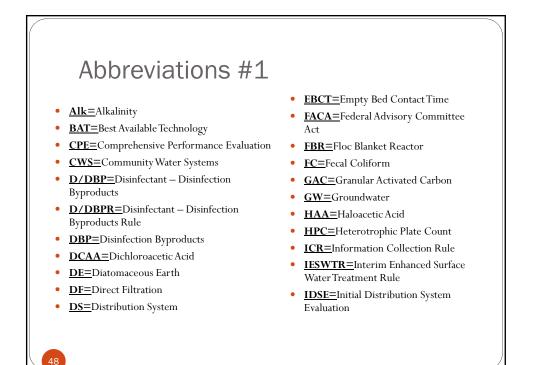




St	oichiometry of Fe Oxidatio) N J.E. Tobiason
Oxidant	Reaction for Oxidation of Fe(II) to Fe(III)	Stoichiometry (mg ox/mg Fe)
O ₂ (aq)	$2Fe^{2+} + \frac{1}{2}O_2 + 5H_2O \rightarrow 2Fe(OH)_3(s) + 4H^+$	0.14
$O_3 \rightarrow O_2 (aq)$	$2Fe^{2+} + O_3 + 5H_2O \rightarrow 2Fe(OH)_3(s) + O_2 + 4H^+$	0.43
Cl ₂ (HOCl)	$2Fe^{2+} + HOC1 + 5H_2O \rightarrow 2Fe(OH)_3(s) + Cl^- + 5H^+$	0.64
$\begin{array}{c} \text{ClO}_2 \rightarrow \\ \text{ClO}_2^- \end{array}$	$Fe^{2+} + ClO_2 + 3H_2O \rightarrow Fe(OH)_3(s) + ClO_2^- + 3H^+$	1.20
MnO ₄ -	$3Fe^{2+} + MnO_4^- + 7H_2O \rightarrow 3Fe(OH)_3(s) + 2MnO_2(s) + 5H^+$	1.41
40 CEE 3	71 L#22	David Reckhow




St	oichiometry of Mn Oxidat	ion
Oxidant	Base Reaction for Oxidation of Mn(II) to Mn(IV)	d on: J.E. Tobiason's not Stoichiometry
		(mg ox/mg Mn)
O ₂ (aq)	$Mn^{2+} + \frac{1}{2}O_2 + H_2O \rightarrow MnO_2(s) + 2H^+$	0.29
$O_3 \rightarrow O_2 (aq)$	$2Mn^{2+} + O_3 + H_2O \rightarrow MnO_2(s) + O_2 + 2H^+$	0.88
Cl ₂ (HOCl)	$Mn^{2+} + HOCl + H_2O \rightarrow MnO_2(s) + Cl^- + 3H^+$	1.30
$\begin{array}{c} \text{ClO}_2 \rightarrow \\ \text{ClO}_2^- \end{array}$	$Mn^{2+} + 2ClO_2 + 2H_2O \rightarrow MnO_2(s) + 2ClO_2^- + 4H^+$	2.45
MnO ₄ -	$3Mn^{2+} + 2MnO_4^- + 2H_2O \rightarrow 5MnO_2(s) + 4H^+$	1.44
42 CEE	371 L #22	David Reckhow



s to reduin	samples		
Jumber of sites de Ainimum number Population served	of tap samples u		
ropulation served	Regular monitoring	monitorig	
≤ 100	5	5	
101 - 500	10	5	
501-3,300	20	10	
3,301 - 10,000	40	20	

Abbreviations #2

- LRAA=Locational Running Annual Average
- <u>LT2ESWTR=</u>Long Term 2 Enhanced Surface Water Treatment Rule
- LT1ESWTR=Long Term 1 Enhanced Surface
 Water Treatment Rule
- <u>MCL=</u>Maximum Contaminant Level
- <u>MCLG=</u>Maximum Contaminant Level Goal
- <u>MRDL=</u>Maximum Residual Disinfectant Level
- <u>NTNCWS=</u>Non-Transient Non-Community Water Systems
- <u>OGWDW=</u>Office of Groundwater and Drinking Water
- <u>PODR=</u>Point of Diminishing Return
- <u>PQL=</u>Practical Quantitation Limit

- <u>RegNeg=</u>Regulatory Negotiations
- <u>**RT=</u>Residence Time**</u>
- <u>S1D/DBP=</u>Stage 1 Disinfection Disinfectant Byproducts
- <u>S2D/DBP=</u>Stage 2 Disinfection Disinfectant Byproducts
- <u>SUVA=</u>Specific UV Absorbance
- <u>SW=</u>Surface Water
- <u>SWTR=</u>Surface Water Treatment Rule
- <u>THM=</u>Trihalomethane
- <u>TNCWS=</u>Transient Non-Community Water Systems
- <u>TOC=</u>Total Organic Carbon
- <u>TOX=</u>Total Organic Halides
- **<u>TTHM=</u>**Total Trihalomethanes